The PARP-1 inhibitor Olaparib suppresses BRCA1 protein levels, increases apoptosis and causes radiation hypersensitivity in BRCA1+/- lymphoblastoid cells
نویسندگان
چکیده
The use of polyADPribose polymerase inhibitors in cancer treatment provides a unique opportunity to target DNA repair processes in cancer cells while leaving normal tissue intact. The PARP-1 enzyme repairs DNA single strand breaks (SSB). Therefore PARP-1 inhibition in BRCA1 negative cancers results in the formation of cytotoxic DNA double strand breaks (DSB) causing synthetic lethality. The use of PARP1 inhibitors is gaining momentum in the treatment of a variety of tumours with BRCA1 involvement including breast, ovarian, pancreatic and prostate cancer. Our previous work showed that the PARP-1 inhibitor Olaparib causes both hypersensitivity of BRCA1+/- cells following exposure to gamma radiation due to the persistence of DNA strand breaks in cells, measured by the DNA damage biomarker γ-H2AX. Therefore dual treatment of cancers with radiotherapy and PARP1 inhibition may lead to cases of increased normal tissue toxicity in cancer patients. In this study we exposed two normal lymphoblastoid cell lines and three heterozygous BRCA1 lymphoblastoid cell lines to the PARP-1 inhibitor Olaparib and gamma radiation and after measured BRCA1 protein expression and apoptosis levels following treatment. BRCA1 protein foci analysis was performed on cells exposed to 2 Gy radiation in the presence or absence of 5 μM Olaparib. Using immunofluorescence and imaging flow cytometry, foci were measured in untreated cells and at 0.5, 3, 5 and 24 hours post-irradiation. Exposing normal and BRCA1+/- cells to Olaparib followed by gamma radiation results in a dramatic change in BRCA1 protein foci expression, with a significant reduction in BRCA1 protein expression observed in the heterozygote cells, together with an increase in apoptosis levels in these cells. In conclusion, combining PARP1 inhibitors with radiotherapy in treating of BRCA1-related cancers has clinical relevance, however this study and our previous publications serve to highlight the potential problems of increased side effects in these scenarios.
منابع مشابه
The PARP inhibitor AZD2281 (Olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells.
PARP inhibitors are considered promising anticancer agents and currently being tested in clinical trials in hereditary breast cancer patients harboring mutations in BRCA1 and BRCA2 genes. In this study, we investigated the antiproliferative effects and mechanism of PARP inhibitors ABT-888 (Veliparib), BSI-201 (Iniparib) and AZD228 (Olaparib) in breast cancer cell lines with BRCA1 or BRCA2 mutat...
متن کاملLoss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors.
UNLABELLED Inhibition of PARP is a promising therapeutic strategy for homologous recombination-deficient tumors, such as BRCA1-associated cancers. We previously reported that BRCA1-deficient mouse mammary tumors may acquire resistance to the clinical PARP inhibitor (PARPi) olaparib through activation of the P-glycoprotein drug efflux transporter. Here, we show that tumor-specific genetic inacti...
متن کاملTriapine disrupts CtIP-mediated homologous recombination repair and sensitizes ovarian cancer cells to PARP and topoisomerase inhibitors.
UNLABELLED PARP inhibitors exploit synthetic lethality to target epithelial ovarian cancer (EOC) with hereditary BRCA mutations and defects in homologous recombination repair (HRR). However, such an approach is limited to a small subset of EOC patients and compromised by restored HRR due to secondary mutations in BRCA genes. Here, it was demonstrated that triapine, a small-molecule inhibitor of...
متن کاملPhosphorylation of ribosomal protein S6 confers PARP inhibitor resistance in BRCA1-deficient cancers
Inhibition of poly(ADP-ribose) polymerase (PARP) is a promising therapeutic strategy for BRCA1 deficient cancers, however, the development of drug resistance limits clinical efficacy. Previously we found that the BRCA1-AKT1 pathway contributes to tumorigenesis and that the AKT1/mTOR is a novel therapeutic target for BRCA1-deficient cancers. Here, we report that phosphorylation of ribosomal prot...
متن کاملPARP inhibitor increases chemosensitivity by upregulating miR-664b-5p in BRCA1-mutated triple-negative breast cancer
Emerging evidence has shown that adding poly(ADP-ribose) polymerase (PARP) inhibitors to chemotherapy regimens is superior to the control regimens alone in BRCA1-mutated triple-negative breast cancer (TNBC) patients, but their underlying mechanisms have not been fully elucidated. In this study, using miRNA microarray analysis of two BRCA1-mutated TNBC cell lines, we found that miR-664b-5p expre...
متن کامل